3.1 | Synthesis of Biological Macromolecules

By the end of this section, you will be able to do the following:

- · Understand macromolecule synthesis
- · Explain dehydration (or condensation) and hydrolysis reactions

As you've learned, **biological macromolecules** are large molecules, necessary for life, that are built from smaller organic molecules. There are four major biological macromolecule classes (carbohydrates, lipids, proteins, and nucleic acids). Each is an important cell component and performs a wide array of functions. Combined, these molecules make up the majority of a cell's dry mass (recall that water makes up the majority of its complete mass). Biological macromolecules are organic, meaning they contain carbon. In addition, they may contain hydrogen, oxygen, nitrogen, and additional minor elements.

Dehydration Synthesis

Most macromolecules are made from single subunits, or building blocks, called **monomers**. The monomers combine with each other using covalent bonds to form larger molecules known as **polymers**. In doing so, monomers release water molecules as byproducts. This type of reaction is **dehydration synthesis**, which means "to put together while losing water."

Figure 3.2 In the dehydration synthesis reaction above, two glucose molecules link to form the disaccharide maltose. In the process, it forms a water molecule.

In a dehydration synthesis reaction (Figure 3.2), the hydrogen of one monomer combines with the hydroxyl group of another monomer, releasing a water molecule. At the same time, the monomers share electrons and form covalent bonds. As additional monomers join, this chain of repeating monomers forms a polymer. Different monomer types can combine in many configurations, giving rise to a diverse group of macromolecules. Even one kind of monomer can combine in a variety of ways to form several different polymers. For example, glucose monomers are the constituents of starch, glycogen, and cellulose.

Hydrolysis

Polymers break down into monomers during hydrolysis. A chemical reaction occurs when inserting a water molecule across the bond. Breaking a covalent bond with this water molecule in the compound achieves this (Figure 3.3). During these reactions, the polymer breaks into two components: one part gains a hydrogen atom (H+) and the other gains a hydroxyl molecule (OH–) from a split water molecule.

Figure 3.3 In the hydrolysis reaction here, the disaccharide maltose breaks down to form two glucose monomers by adding a water molecule. Note that this reaction is the reverse of the synthesis reaction in Figure 3.2.

Dehydration and hydrolysis reactions are catalyzed, or "sped up," by specific enzymes; dehydration reactions

involve the formation of new bonds, requiring energy, while hydrolysis reactions break bonds and release energy. These reactions are similar for most macromolecules, but each monomer and polymer reaction is specific for its class. For example, catalytic enzymes in the digestive system hydrolyze or break down the food we ingest into smaller molecules. This allows cells in our body to easily absorb nutrients in the intestine. A specific enzyme breaks down each macromolecule. For instance, amylase, sucrase, lactase, or maltase break down carbohydrates. Enzymes called proteases, such as pepsin and peptidase, and hydrochloric acid break down proteins. Lipases break down lipids. These broken down macromolecules provide energy for cellular activities.

Visit this site (http://openstaxcollege.org/l/hydrolysis) to see visual representations of dehydration synthesis and hydrolysis.

3.2 | Carbohydrates

By the end of this section, you will be able to do the following:

- Discuss the role of carbohydrates in cells and in the extracellular materials of animals and plants
- · Explain carbohydrate classifications
- List common monosaccharides, disaccharides, and polysaccharides

Most people are familiar with carbohydrates, one type of macromolecule, especially when it comes to what we eat. To lose weight, some individuals adhere to "low-carb" diets. Athletes, in contrast, often "carb-load" before important competitions to ensure that they have enough energy to compete at a high level. Carbohydrates are, in fact, an essential part of our diet. Grains, fruits, and vegetables are all natural carbohydrate sources that provide energy to the body, particularly through glucose, a simple sugar that is a component of **starch** and an ingredient in many staple foods. Carbohydrates also have other important functions in humans, animals, and plants.

Molecular Structures

The stoichiometric formula $(CH_2O)_n$, where n is the number of carbons in the molecule represents **carbohydrates**. In other words, the ratio of carbon to hydrogen to oxygen is 1:2:1 in carbohydrate molecules. This formula also explains the origin of the term "carbohydrate": the components are carbon ("carbo") and the components of water (hence, "hydrate"). Scientists classify carbohydrates into three subtypes: monosaccharides, disaccharides, and polysaccharides.

Monosaccharides

Monosaccharides (mono- = "one"; sacchar- = "sweet") are simple sugars, the most common of which is glucose. In monosaccharides, the number of carbons usually ranges from three to seven. Most monosaccharide names end with the suffix -ose. If the sugar has an aldehyde group (the functional group with the structure R-CHO), it is an aldose, and if it has a ketone group (the functional group with the structure RC(=O)R'), it is a ketose. Depending on the number of carbons in the sugar, they can be trioses (three carbons), pentoses (five carbons), and/or hexoses (six carbons). **Figure 3.4** illustrates monosaccharides.